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We introduce MarDini, a new family of video diffusion models that integrate the advantages of
masked auto-regression (MAR) into a unified diffusion model (DM) framework. Here, MAR handles
temporal planning, while DM focuses on spatial generation in an asymmetric network design: i) a
MAR-based planning model containing most of the parameters generates planning signals for each
masked frame using low-resolution input; ii) a lightweight generation model uses these signals to
produce high-resolution frames via diffusion de-noising. MarDini’s MAR enables video generation
conditioned on any number of masked frames at any frame positions: a single model can handle
video interpolation (e.g., masking middle frames), image-to-video generation (e.g., masking from
the second frame onward), and video expansion (e.g., masking half the frames). The efficient
design allocates most of the computational resources to the low-resolution planning model, making
computationally expensive but important spatio-temporal attention feasible at scale. MarDini sets
a new state-of-the-art for video interpolation; meanwhile, within few inference steps, it efficiently
generates videos on par with those of much more expensive advanced image-to-video models.
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1 Introduction

Auto-regressive (AR) transformers (Vaswani et al., 2017; Peng et al., 2023; Schmidhuber, 1992a; Schlag et al.,
2021) have recently demonstrated remarkable success in natural language processing (Dubey et al., 2024;
Team et al., 2023; Achiam et al., 2023), sparking efforts to achieve similar breakthroughs in computer vision
(Rombach et al., 2022; Dai et al., 2023a; Saharia et al., 2022a). However, unlike the discrete, sequential, and easily
tokenized nature of language, visual data consist of continuous pixel signals distributed across a high-dimensional
space, making them more difficult to model through 1D auto-regression.
To overcome this challenge, recent studies have explored vector quantization techniques (Van Den Oord
et al., 2017; Razavi et al., 2019) to convert continuous pixel data into discrete representations suitable for
AR modelling. Unfortunately, these approaches (Yu et al., 2022; Ramesh et al., 2021) rely on causal attention,
which is not well aligned for high-dimensional visual data, often leading to diminished performance (Li
et al., 2024), particularly on large-scale datasets (Xie et al., 2024; Zhou et al., 2024). To mitigate this limitation,
masked auto-regression (MAR) has been introduced (Chang et al., 2022; Li et al., 2023a). MAR replaces
the causal attention with bi-directional attention (He et al., 2021; Devlin et al., 2019), effectively simulating
auto-regressive behaviour while being more capable of handling visual data. Leveraging this approach,
MAR exhibits flexibility in handling diverse generation tasks through different masking strategies, such as
image generation (Chang et al., 2022; Li et al., 2023a), out-painting (Chang et al., 2022), video expansion (Yu
et al., 2023a) and class-conditioned video generation (Yu et al., 2024; Voleti et al., 2022) while maintaining
manageable computational overhead. Although MAR shows potential in scaling image and video generation
tasks (Chang et al., 2023; Yu et al., 2023a, 2024), its key bottleneck lies in its training instability which is tied
to the reliance on discrete representations (Ramesh et al., 2021; Razavi et al., 2019).
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Meanwhile, Diffusionmodels (DMs) (Ho et al., 2020; Neal, 2001; Jarzynski, 1997) have emerged as a successful
alternative for scaling vision generative models, offering stable training by modelling visual signals directly in
a continuous space. However, DMs tend to incur high inference costs due to the requirement of the multi-step
diffusion process. Here, video generation poses an even greater challenge — Video is a strict super-set of the
image domain, requiring additional modelling for temporal consistency and complex motion dynamics.
To this end, we propose a new paradigm for video generation that combines the flexibility of MAR in a
continuous space with the robust generative capabilities of DM. Specifically, we present a scalable training recipe
and an efficient neural architecture design for video generation. Our model decomposes video generation
into two sub-tasks — temporal and spatial modelling — handled by distinct networks with an asymmetric
design based on the following two principles:
1. MAR handles long-range temporal modelling, while DM focuses on detailed spatial modelling.
2. MAR operates with more parameters at a lower resolution, while DM operates with fewer parameters at a higher

resolution.
Following these principles, we use the same training batch for both MAR and DM but employ two distinct
processes operating at different resolutions. MAR receives randomly masked low-resolution input frames
and predicts the corresponding planning signals. Conditioned on these planning signals via cross-attention
and the unmasked frames, DM learns to incrementally recover the masked high-resolution frames from noise.
Finally, we introduce a progressive training strategy that gradually curates mask ratios and with its data
pipelines, allowing our model to be trained from scratch on unlabeled video data. This eliminates the common
reliance on text-to-image and text-to-video pre-training, as seen in other video diffusion models (Girdhar
et al., 2023; Blattmann et al., 2023a).
Our model integrates MAR-based planning signals with a DiT-based (Peebles and Xie, 2023; Chen et al., 2024c)
lightweight, tiny diffusion model, hence the name MarDini. Our empirical study on MarDini highlights the
following key characteristics:
• Flexibility. WithMAR conditioning, MarDini naturally supports a range of video generation tasks through

flexiblemasking strategies. For example, when given the first frame andmasking the rest, it performs image-
to-video generation; when given a video andmasking subsequent frames, it performs video expansion; and,
when given the first and last frames and masking the middle frames, it performs video interpolation. By
hierarchically and auto-regressively masking middle frames across multiple inferences, MarDini generates
slow-motion videos.

• Scalability. MarDini can be trained from scratch at scale, without relying on generative image-based
pre-training. In contrast to most video generation models, that treat video as a secondary task following
image generation, MarDini leverages mask ratio tuning to progressively adjust the difficulty of the training
task. This approach enables the model to scale from video interpolation to full video generation, directly
bypassing the need for image-based pre-training.

• Efficiency. MarDini’s asymmetric design allocates more computational resources to lower resolutions,
making it memory-efficient and fast during inference. With lower overall memory usage, MarDini allows
the deployment of computationally intensive spatio-temporal attention mechanisms at scale, improving its
ability to model complex motion dynamics.

2 MarDini: An Efficient and Asymmetric Video DiffusionModel

2.1 Design Overview

MarDini is a video generation model designed to efficiently generate high-resolution videos using an asym-
metric network architecture. As shown in Figure 1, MarDini consists of two networks: a heavy-weight MAR
planning model and a light-weight generation DM. During training, the planning network processes randomly
masked low-resolution frames and predicts corresponding planning signals. These planning signals compress
the semantic and long-range temporal information, guiding the DM’s high-resolution generation process. The
DM receives noisy frames at the masked positions and reconstructs them by progressively removing noise.
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Figure 1 MarDini Training Pipeline Overview. A latent representation is computed for unmasked frames that serve as a
conditional signal to a generative process. On the first hand, we have a planning model that autoregressively encodes
global conditioning signals from a low-resolution version of the unmasked latent inputs. On the other hand, the planning
signals are fed to the diffusion-based generation model through cross-attention layers. A high-resolution version of the
input conditions is also ingested by the diffusion model, enabling generation with a coherent temporal structure and a
direct mechanism to attend to fine-grained details of the unmasked frames. MarDini is trained end-to-end via masked
frame-level diffusion loss.

In this section, we outline and address the key design challenges involved in training MarDini. First, we
describe the data representations and their corresponding notations within the MarDini framework (Sec-
tion 2.2). Next, we describe the design details of the MAR planning network and the DM, along with the
integration of additional guidance such as diffusion steps and planning signals (Section 2.3). Finally, we
outline the multi-stage training recipe for MarDini, which we found to be essential for ensuring stable training
(Section 2.4). Collectively, these innovations enable MarDini to become one of the first video generation
models capable of being trained from scratch using only unlabelled video data.

2.2 Data Representation and Notations

VAE Compressor. Consistent with prior works (Dai et al., 2023a; Girdhar et al., 2023), we adopt a pre-trained
Variational Auto-Encoder (VAE) (Kingma and Welling, 2014), denoted by Denc, to compress videos into
a low-dimensional continuous latent space, which improves both training and inference efficiency. Our
VAE employs a 16-channel latent dimension with an 8× spatial compression rate to preserve spatial details,
following Dai et al. (2023a). The VAE outputs are then patchified into a shape of N × C, where N represents
the token count and C = 16 represents its latent dimension.

MAR Planning Model. Given a low-resolution input video Xlow = {xlowi }i=1:K with K frames, we apply the
VAE encoder to compress the frames into their corresponding latent representations: Zlow = {zlowi }i=1:K =

Denc(Xlow). To train theMAR planningmodelP , we randomly select K′ < K video latents {zlow
j }j=1:K′ ∈ Zlow

and replace them with a learnable mask token [MASK], resulting in the final masked low-resolution latent
inputs Zmask

low . The planning model then processes Zmask
low and predicts Zcond = P(Zmask

low ) = {zcondi }i=1:K,
where zcondi is the planning signal for the i-th frame, shaped as Nlow × Clow, with Nlow representing the
number of patches per frame.

DMGenerationModel. Conversely, we obtain high-resolution video latentsZhigh = {zhighi }i=1:K = Denc(Xhigh)
with dimensions Nhigh × Chigh, generated by the VAE encoder using the same video inputs at high resolution:
Xhigh = {xhighi }i=1:K. Notably, we have Nhigh ≫ Nlow. At diffusion step t, we sample noise and add it to
K′ frames that were masked in the planning model (denoted by [NOISE]), leaving the remaining K − K′

reference frames unchanged (denoted by [REF]). This produces the final noisy high-resolution video latent
inputs Znoise,t

high . Then, the generation model G processes these latent inputs Znoise,t
high and performs a standard

denoising step, where we denote the DM output at time step t as G(Znoise,t
high , Zcond, t).
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Figure 2 MarDini Design Details. MarDini employs a transformer architecture for both the planning and generation
models, incorporating a DiT-style block for the generation model and a Llama-style block for the planning model. We set
L1 ≫ L2, where L1 and L2 refer to the number of layers in the planning and generation model respectively.

2.3 Architecture Design

In this section, we provide a comprehensive explanation of the MarDini architecture, including its detailed
design, model configurations, and variations.

2.3.1 MarDini Block Design

Figure 2 illustrates the design of the MarDini’s MAR and DM models, both of which are based on the
transformer architecture (Vaswani et al., 2017).
In the MAR planning model, we adhere to the design conventions established in Llama models (Dubey et al.,
2024; Touvron et al., 2023), which apply RMS-Norm (Zhang and Sennrich, 2019) to normalize the inputs of
each attention block. Additionally, layer normalization (Ba et al., 2016) is applied to normalize the projected
features in multi-head attention, enhancing training stability. Due to the use of low-resolution inputs, we
manage to directly employ spatio-temporal attention, allowing tokens to attend across frames. This design is
feasible only with asymmetric resolution inputs, as it prevents excessive memory consumption.
Concretely, within each attention block in MAR, we utilize rotary positional encoding (RoPE) (Su et al., 2024)
to encode both the spatial and temporal positions of the video tokens. To accomplish this, we apply a 2D RoPE
to encode the 3-dimensional video data. Specifically, we flatten the image patches into a 1-dimensional token
sequence and insert a learnable [NEXT] token to differentiate image patches across different rows, following
Gao et al. (2024). This design effectively handles video data with varying aspect ratios and resolutions.
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We design the DM model in alignment with MAR, but with three key differences. First, we adopt a DiT-style
approach (Peebles and Xie, 2023), using AdaIN (Huang and Belongie, 2017) to integrate the diffusion steps
as a conditional signal within the spatial attention layers, and additionally added with the MAR’s planning
signal within the MLP layers. Second, we introduce a cross-attention layer to process the planning features
predicted by theMARmodel. Lastly, we replace spatio-temporal attention with temporal attention (Blattmann
et al., 2023b) to reduce the computational cost associated with high-resolution inputs in DM.

2.3.2 Identity Attention

[REF][NOISE] [NOISE] [NOISE]

[REF][NOISE] [NOISE] [NOISE]

Figure 3 Identity Attention Design
Details in DM. In this setup, [REF]
tokens only attend to themselves,
while [NOISE] tokens attend to all
other tokens across different frames.

In our initial experiments, we observed significant training instability
in MarDini’s DM. We speculate that this is due to two main factors: i)
the inherent distributional disparity between noisy ([NOISE]) tokens
and clean reference ([REF]) tokens, which is further amplified by the
stochastic nature of sampling diffusion steps; and ii) the random posi-
tions and varying lengths of these [NOISE] tokens. These factors likely
compound, potentially disrupting the DM’s training signals and hinder-
ing the model’s ability to converge efficiently.
To address this challenge, we introduce Identity Attention, which en-
ables the model to easily distinguish between [REF] and [NOISE] tokens
by employing a separate attention strategy. As illustrated in Figure 3,
[REF] tokens simply serve as an identity projection, preserving the input
reference frames without attending to other tokens. In contrast, [NOISE]
tokens possess a global view, attending to tokens across all frames. The
[REF] tokens serve as guidance for generation, so we design them to be
isolated from other tokens, while [NOISE] tokens provide global atten-
tion to all conditional signals for generation. We incorporate Identity
Attention in both the spatio-temporal layers of MAR and the temporal
layers of DM, which has been found to significantly enhance training
stability in both models.

2.3.3 Model Configuration

As outlined in Table 1, this study develops four models with distinct configurations. We train two planning
models with 3.1B and 1.3B parameters alongside two generation models, employing spatio-temporal or
temporal attention mechanisms. To align with our asymmetric design between the planning and generation
models, the generation model’s parameter size is reduced to 3× or 10× smaller than that of the planning
model. Due to the high computational cost of spatio-temporal attention, we limit MarDini-L/ST and MarDini-
S/ST to a 9-frame length for fair comparison on VIDIM-Bench (Jain et al., 2024). Importantly, the model’s
ability to autoregressively generate samples ensures that the length of the output video is not constrained.

Configuration Planning Model (MAR) Generation Model (DM) Frame
Depth Hidden Size MLP Size Attn. Param. Depth Hidden Size MLP Size Attn. Param.

MarDini-S/ST 8 4096 4096 S.-T. Attn. 1.3B 8 1024 4096 S.-T. Attn. 288M 9
MarDini-L/ST 16 4096 8192 S.-T. Attn. 3.1B 8 1024 4096 S.-T. Attn. 288M 9
MarDini-S/T 8 4096 4096 S.-T. Attn. 1.3B 8 1024 4096 T. Attn. 288M 17
MarDini-L/T 16 4096 8192 S.-T. Attn. 3.1B 8 1024 4096 T. Attn. 288M 17

Table 1 Configuration Details of MarDini Models. We provide four models, differing primarily in the size of the planning
module (3.1B vs. 1.3B parameters) and the attention mechanisms used in the generation module: spatio-temporal
attention (S.-T. Attn.) vs. temporal attention (T. Attn.).

2.4 MarDini Training Recipes

In this section, we outline the training pipeline of MarDini. Specifically, we employ a multi-stage progressive
training strategy that gradually increases task difficulty. This approach offers two key benefits: i) progressive
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Planning Model (MAR)
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Mask Ratio: 45% - 100%
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Generation Model (DM)
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Mask Ratio: 65% - 100%
# Frames:4  | FPS: 8 | Resolution: 256
Training Data: 200M Clips

Joint-Model Stage

Mask Ratio: 35% - 100%
# Frames:9  | FPS: 8 | Resolution: 256
Training Data: 75M Clips

Joint-Task Stage

Mask Ratio: 15% - 60%
# Frames:9  | FPS: 8 | Resolution: 512
Training Data: 40M Clips
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Projection Layer
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Mask Ratio: 6% - 30%
# Frames:17  | FPS: 8 | Resolution: 512
Training Data: 40M Clips

Mask Ratio: 6% - 30%
# Frames:17  | FPS: 8 | Resolution: 768
Training Data: 20M Clips

Mask Ratio: 6% - 30%
# Frames:17  | FPS: 8 | Resolution: 1024
Training Data: 5M Clips

Planning Model (MAR)

Generation Model (DM)

Masked Reconstruction Loss

Masked Diffusion Loss Masked Diffusion Loss Masked Diffusion Loss Masked Diffusion Loss

Masked Diffusion Loss

Planning Model (MAR)
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Planning Model (MAR)
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Planning Model (MAR)

Generation Model (DM)

Masked Diffusion Loss

Planning Model (MAR)

Generation Model (DM)

Masked Diffusion Loss

Mask Ratio: 6% - 30%
# Frames:17  | FPS: 8 | Resolution: 512
Training Data: 40M Clips

MarDini-512/T

MarDini-512/ST

MarDini-768/T MarDini-1024/T

Figure 4 MarDini Training Manual. We list the mask ratios, frame rate (FPS), number of frames, and the size of training
data for each training stage. This training manual applies to both small (MarDini-S) and large (MarDini-L) models.
Note that the total training data refers to the amount of data observed by the model for gradient updates, rather than the
vanilla size of the training dataset. Our final model checkpoints are highlighted in gray.

learning inherently enhances training stability and improves the performance of generative models, as
demonstrated by Karras (2018) and Chen et al. (2024b); and ii) it allows for the collection of checkpoints from
earlier stages, which helps mitigate setbacks caused by suboptimal configurations. Below, we elaborate on
our detailed progressive training strategy, including the training objectives, architecture design, and training
data configurations. A comprehensive training manual for MarDini is shown in Figure 4, with detailed
hyper-parameters and optimization methods further outlined in the Appendix B.

2.4.1 Training Tasks: From Frame Interpolation to Video Generation

Our training objectives are organized into three stages: i) Initial Stage: We separately train the planning and
generation models, each with its own learning objective, to initialize their model weights. ii) Joint-Model
Stage: We combine the models for joint training on a simple video interpolation task, using only a masked
diffusion loss. iii) Joint-Task Stage: We further train the model by gradually reducing the number of preserved
reference frames, enabling it to jointly learn video interpolation and image-to-video generation tasks.

Initial Stage. Wang et al. (2024a) pointed out that transformers with a large parameter count often experience
unstable training. As such, we simplify the training dynamics by separately warming up the two models as
an initial step.

6



To optimize generation model G, we employ a masked diffusion loss LDM:

Lθ
DM = ||M · Vt − M · Gθ(Z

noise,t
high , Zuncond, t)||22, (1)

where Zuncond is a learnable token serving as unconditional guidance from the planning model. θ represents
the parameters of the generation model, and M denotes the binary masks used to mask out all clean reference
frames. Inspired by Blattmann et al. (2023b); Salimans and Ho (2022), we apply velocity prediction as the
diffusion loss, where the prediction target Vt = {vt

i}i=1:K represents the velocity at time step t for the i-th
frame, defined as vt

i = αtϵ − σtz
high
i , ϵ ∼ N (0, I). Here, αt and σt correspond to the diffusion scheduler at t

step.
To optimize MAR planning model P , we employ a masked reconstruction loss LMAR:

Lϕ,ζ
MAR = ||M · Zlow − M · fζ(Pϕ(Zmask

low )||22. (2)

where f denotes a projection layer that depatchifies the model predictions to match the resolution of the
low-resolution input image Zlow. ϕ, ζ represent the learnable parameters of the planning model and the
projection layer respectively. Note that, f is only used during the initial training stage, and will be removed in
the later training stages.

Joint-Model Stage. After the initial pre-training stage, we then jointly train the planning and generation
models end-to-end using a unified masked diffusion learning objective LMDiff:

Lθ,ϕ
MDiff = ||M · Vt − M · Gθ(Z

noise,t
high ,Pϕ(Zmask

low ), t)||22, (3)

where Zcond = P(Zmask
low ) is the planning signal predicted by MAR. In order to enable classifier-free guidance

(Ho and Salimans, 2022) on the planning signal, we maintain a fixed probability of 1⁄10 to randomly replace
Zt
cond with Zuncond.

Joint-Task Stage. In the final training stage, we reuse the learning objective from the previous stage, but
gradually decrease the masking ratio to induce more challenging generation tasks. Here, mask ratio refers to
the proportion of frames preserved during training. This stage requires a significantly larger computational
resources with higher-resolution videos, as it determines the model’s final performance. By gradually
decreasing the masking ratios, we smoothly transform the model’s task from video interpolation to single-
image-to-video generation. This procedure ultimately enables the model to generate videos with a variable
number of input frames at arbitrary temporal locations.

2.4.2 DMArchitecture: From Spatio-Temporal to Temporal Attention

In conjunction with our progressive training objectives, we also introduce a progressive architectural design.
Specifically, we first use spatio-temporal attention in the DM during the initial training stage. This choice
promotes convergence, compared to temporal attention, as noted in Gao et al. (2024). Since in our initial stage
we train the DM in isolation and on a relatively low-resolution setup, this sophisticated attention incurs in
minor computational overhead. When integrating MAR with the DM in the second stage, we replace the
spatio-temporal attention with the more cost-effective temporal attention, thus increasing the efficiency of the
generation model.

2.4.3 Data: Progressive Configuration of Specifications

Analogous to our progressive strategies for training objective and architecture we also propose a progressive
data configuration. Over time, we gradually increase the video’s spatial resolution, alongside progressively
extending the video’s duration. This approach ensures efficient use of computational resources and facilitates
effective model scaling, allowing MarDini to handle more complex and high-resolution video data as training
progresses.
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3 Experiments

We evaluate MarDini on two benchmarks: VIDIM-Bench (Jain et al., 2024), for long-term video interpolation,
and VBench (Huang et al., 2024) for image-to-video generation. We further elaborate on the specifics of these
benchmarks in Appendix D.We highly encourage referring to the generated videos in our web page for a comprehensive
understanding of the quality of the generated videos.

3.1 Ablation Studies and Analysis

Effectiveness of MAR and DM. We demonstrate the importance of having a DM on top of our MAR planning
model. In fact, it is tempting to hypothesize that MAR on its own contains all the ingredients to enable
high-quality video interpolation. To explore this, we introduce a projection layer to directly unpatchify the
output of the MAR model without intermediate diffusion. Our experiments on VIDIM-Bench reveal that,
MAR on its own, performs poorly on interpolation tasks, as shown by the first two and last two rows in
Table 2, for both the 1B and 3B settings. This result suggests that directly applying MAR to continuous space
is suboptimal, a result consistent with previous findings (Li et al., 2024). Similarly, directly tackling this
task with a small DM without global guidance, according to the third row of Table 2, results in sub-optimal
performance. However, by combiningMAR’s planning capability with DM’s stable performance in continuous
space, we achieve optimal results, demonstrating that both components are beneficial for video generation.

Table 2 Effectiveness of MAR and DM design.
The reported results are FVD on VIDIM-Bench.
All experiments are evaluated at a resolution of
[256× 256] using DDIM scheduler with 25 steps.

Planning
Model

Generation
Model

FVD↓
DAVIS UCF101

MAR-1B - 427.66 741.80
MAR-3B - 373.03 701.03

- DM-0.3B 320.89 383.04
MAR-1B DM-0.3B 224.07 258.08
MAR-3B DM-0.3B 102.87 197.69

Table 3 Efficiency of the MarDini’s generations with and without
the asymmetric design. Both latency and GPUmemory is measured
as the average time to generate a video using DDIM with 25 steps
using a single A100 GPU, and with bf16 mixed precision.

Asymm.
Attention

Asymm.
Resolution

# Inference
Frames

[256 × 256] [512 × 512]
Latency GPU Mem. Latency GPU Mem.

% % 9 (1 to 8) 2.76 s 25.22 G 25.09 s 74.44 G
% ! 9 (1 to 8) 17.91 s 41.03 G
% % 13 (1 to 12) 4.41 s 27.80 G Out of Memory
% ! 13 (1 to 12) 34.58 s 62.51 G
! % 13 (1 to 12) 2.63 s 27.75 G Out of Memory
! ! 13 (1 to 12) 6.05 s 42.57 G

Efficiency Analysis. Table 3 illustrates latency and memory usage across different input resolutions and frame
lengths, measured on the same computational platform. When MAR is set to operate symmetrically with the
DM with the same inputs, the model cannot fit in the available GPU memory as we increase the resolution
and/or number of frames. In contrast, our asymmetric design enables the generation of 12-frame clips at 512
resolution in just a few seconds. The rapid generation process is partially attributed to the DM requiring
relatively few inference steps to converge, thanks to the well-structured planning signal it receives, as shown
in Figure 6a. Notably, inference speed could be further optimized, as the only acceleration technique we
incorporated during our experiments is mixed precision, without employing caching strategies (Liu et al.,
2024; Zhao et al., 2024), FSDP, or static compilation of the underlying computational graph. Similarly, memory
usage could be further reduced through CPU offloading, sliced attention, sequential VAE inference, etc.

Explaining MAR’s Planning Signal. We provide an intuitive explanation of MAR’s role in MarDini. During
training, a learnable token is used to randomly replace MAR to support CFG (Ho and Salimans, 2022),
allowing DM to generate videos independently. We visualize the results of MarDini with and without
planning signals. As shown in Figure 5, without the planning model, DM can still produce meaningful frames
but, as expected, lacks “global planning.” In Figure 5 (Left), DMmoves objects in different directions, causing
distortion in the building, which suggests a weaker or non-existing prior model of how objects move. Similarly,
in Figure 5 (Right), DM fails to accurately predict the movement of the fire. In contrast, incorporating the
planning signal addresses these visual flaws. These results indicate that MAR’s planning signal effectively
hints how elements should move, ensuring long-term coherence in the generated video.
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Figure 5 MarDini’s generations with and without the planning model. Here we show video frames generated when
conditioning on the middle frame. Without MAR’s planning signal, DM generates degraded motion, such as pixel
distortions (highlighted in red, left) or incorrect motions (highlighted in blue, right).
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Figure 4 Visualization for the MarDini’s generations with and without the planning model. We present the generated
frames conditioned on a middle reference frame. Without the planning signal, we observe that DM generates degraded
motion, often leading to pixel distortions (highlighted in red, left) or incorrect motions (highlighted in blue, right).

1 10 25 50 100

200

300

400

500

600

Inference Steps

FV
D

UCF101-7
DAVIS-7

(a) Video interpolation performance
with varying inference steps.

0 1 2 3 4 5
·104

175

200

225

250

275

Training Steps

FV
D

0 1 2 3 4 5
·104

89

90

91

VB
en

ch
Av

g.
Sc

or
e

UCF101-7 DAVIS-7 VBench

(b) Relationship between video interpolation
and image-to-video generation.

0 2 4 6 8 10
·103

0.2

0.25

0.3

0.35

0.4

Training Steps

Tr
ain

in
gL

os
s

w/o Identity Atten.
w/ Identity Atten.

(c) Training loss with or without
identity attention.

Figure5 Ablation study for MarDini. (a) illustrates the performance of video interpolation and image-to-video generation
during training, as the resolution scales from 256 to 512 using MarDini-x/ST. The results are based on a mask ratio range
of 0.15 to 0.6 with a frame length of 9; (b) shows the FVD results for MarDini-x/ST-512 with varying inference steps using
the DDIM solver. and (c) shows the training curve of our generation model over the first 10k training steps.

without employing caching strategies (Liu et al., 2024; Zhao et al., 2024), FSDP, or PyTorch’s compilation
features. Similarly, memory usage could be further reduced through CPU o�oading, sliced attention, and
sequential VAE inference. Another highlight is that the asymmetric attention design does not significantly
impact performance. For more details, please refer to Section 4.2.

From Video Interpolation to Image-To-Video Generation. Our training recipe follows the philosophy of transi-
tioning from video interpolation to image animation. Herein, we empirically demonstrate that these two
tasks are strongly related, validating the soundness of our roadmap. As shown in Fig. 5 (b), we track the
performance of MarDini on both video interpolation and image animation during a training phase aimed
at scaling the resolution from 256 to 512. This stage marks the first point during training where the model
successfully performs both tasks simultaneously. We observe a promising consistency between the perfor-
mance of image animation and video interpolation, providing solid evidence that these tasks do not hinder
each other. Furthermore, with a carefully tuned mask ratio, the model can be trained in a unified manner to
e�ciently achieve both tasks.

Impact of Identity Attention We explore the e�ectiveness of Identity Attention in handling our specific data
format, which integrates both reference frames and noised/masked frames into a single sequence. As
illustrated in Figure 5 (c), we track the training trajectory in the early stages of the DM generation model. We
recognize that this type of input can lead to unstable training, particularly when starting from scratch, as
the di�erences between reference frames are di�cult to discern. However, the proposed Identity Attention
mechanism mitigates this instability. The decrease in training loss observed after 6k steps is attributed to the
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mance of image animation and video interpolation, providing solid evidence that these tasks do not hinder
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e�ciently achieve both tasks.
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impact performance. For more details, please refer to Section 4.2.

From Video Interpolation to Image-To-Video Generation. Our training recipe follows the philosophy of transi-
tioning from video interpolation to image animation. Herein, we empirically demonstrate that these two
tasks are strongly related, validating the soundness of our roadmap. As shown in Fig. 5 (b), we track the
performance of MarDini on both video interpolation and image animation during a training phase aimed
at scaling the resolution from 256 to 512. This stage marks the first point during training where the model
successfully performs both tasks simultaneously. We observe a promising consistency between the perfor-
mance of image animation and video interpolation, providing solid evidence that these tasks do not hinder
each other. Furthermore, with a carefully tuned mask ratio, the model can be trained in a unified manner to
e�ciently achieve both tasks.

Impact of Identity Attention We explore the e�ectiveness of Identity Attention in handling our specific data
format, which integrates both reference frames and noised/masked frames into a single sequence. As
illustrated in Figure 5 (c), we track the training trajectory in the early stages of the DM generation model. We
recognize that this type of input can lead to unstable training, particularly when starting from scratch, as
the di�erences between reference frames are di�cult to discern. However, the proposed Identity Attention
mechanism mitigates this instability. The decrease in training loss observed after 6k steps is attributed to the
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(c) Training loss of MarDini w and w/o
Identity Attention.

Figure 6 MarDini Training and Inference Performance. (a) MarDini achieves optimal generation performance with
few inference steps using the DDIM solver; (b) As training progresses, MarDini shows improvement in the tasks of both
video interpolation and image-to-video. These results are based on a mask ratio ranging from 0.15 to 0.6 for 9-frame
generation; and (c) The design of Identity Attention is crucial for stable training convergence in MarDini during the initial
training stage; without it, the model fails to converge.

From Video Interpolation to Image-To-Video Generation. Our training recipe follows the philosophy of transition-
ing from video interpolation to image animation. Herein, we empirically demonstrate that these two tasks are
related, validating the soundness of our pipeline. As shown in Figure 6b, we track the performance of MarDini
on both video interpolation and image animation during a training phase aimed at scaling the resolution
from 256 to 512. This stage marks the first point during training where the model successfully performs both
tasks simultaneously. We observe a promising consistency between the performance of image animation and
video interpolation, providing solid evidence that these tasks do not hinder each other. Furthermore, with a
carefully tuned mask ratio, the model can be trained in a unified manner to efficiently achieve both tasks.

Impact of Identity Attention. We explore the effectiveness of Identity Attention in handling our specific data
format, which integrates both reference frames and noised frames into a single sequence. As illustrated in
Figure 6c, we track the training trajectory in the early stages of the DM generation model. We recognize that
this type of input can lead to unstable training, particularly when starting from scratch, as the differences
between reference frames are difficult to discern. However, the proposed Identity Attention mechanism
mitigates this instability. The decrease in training loss observed after 6K steps is attributed to the use of a
warm-up learning rate, where the learning rate is intentionally kept low during the initial steps.

3.2 Results on Video Interpolation

We compare MarDini with the existing methods on the VIDIM benchmark (Jain et al., 2024) for video
interpolation, where the task is to generate 7 frames between a starting and an ending conditional frames.
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Table 4 Performance of zero-shot video interpolation on VIDIM-Bench. The reported results are taken directly from
VIDIM (Jain et al., 2024). AMT, RIFE, and FILM are single-inference methods, while LDMVFI, VIDIM, and our approach
are based on diffusion models with multiple inference steps. MidF-SSIM and MidF-LPIPS represent the SSIM and LPIPS
scores, respectively, for the middle frame. For MarDini-512, we downscale the generated videos to 256 resolution for a fair
comparison.

Method DAVIS-7 UCF101-7
MidF-SSIM MidF-LPIPS FID FVD MidF-SSIM MidF-LPIPS FID FVD

AMT (Li et al., 2023b) 0.4853 0.2865 34.65 234.50 0.7903 0.1691 31.60 344.50
RIFE (Huang et al., 2022) 0.4546 0.2954 23.98 240.04 0.7769 0.1564 18.72 323.80
FILM (Reda et al., 2022) 0.4718 0.3048 30.16 214.80 0.7869 0.1620 26.06 328.20
LDMVFI (Danier et al., 2024) 0.4175 0.2765 22.10 245.02 0.7712 0.1564 18.09 316.30
VIDIM (Jain et al., 2024) 0.4221 0.2986 28.06 199.32 0.6880 0.1768 34.48 278.00
MarDini-S/ST-256 0.4249 0.3654 49.21 224.07 0.7654 0.2480 45.85 258.08
MarDini-L/ST-256 0.4959 0.2768 20.64 102.87 0.7734 0.2213 28.85 197.69

MarDini-S/ST-512 0.5017 0.3193 25.92 138.86 0.7960 0.2315 30.24 205.71
MarDini-L/ST-512 0.5314 0.2736 20.76 99.05 0.7814 0.2347 30.08 204.20
MarDini-L/T-512 0.5085 0.3083 25.30 117.13 0.7893 0.2270 30.72 198.94

As shown in Table 4, MarDini achieves competitive performance among different evaluation metrics. In
particular, it is widely acknowledged that generative models often underperform in reconstruction metrics,
with blurrier images often scoring higher despite receiving lower ratings from human observers (Sahak et al.,
2023; Watson et al., 2023; Jain et al., 2024; Saharia et al., 2022b). We also study a sample that is exemplifying
of this statement in the Appendix A. Therefore, we place greater emphasis on the generative metric, FVD,
where MarDini outperforms competitors and achieves state-of-the-art performance. Notably, MarDini-L/T
employs an asymmetric attention mechanism, where the planning model utilizes spatio-temporal attention,
while the generation model relies on temporal attention. Compared to the model that uses spatio-temporal
attention for both models (MarDini-L/ST), the results suggest that the asymmetric attention mechanism does
not significantly affect performance, achieving a satisfactory trade-off between efficiency and quality. We
provide additional visualizations in Appendix C and the supplementary materials.

3.3 Results on Image-to-Video Generation

In this section, we evaluate our model’s single-image-to-video generation capabilities in comparison with
other methods using the VBench dataset (Huang et al., 2024). As shown in Table 5, our method performs
competitively, especially in terms of latency, despite incorporating expensive spatio-temporal attention. For
fairness, latency is calculated with the same resolution. In this study, we focus on validating the soundness of
our proposed roadmap, only considering the initial pre-training stage rather than delving into post-training
techniques. As a result, we do not incorporate additional conditional signals such as language instructions or
motion score guidance. Therefore, direct comparisons on video quality, particularly in relation to dynamic
degree, are not entirely fair. However, we fully report these numbers for reference.
We also report the results on the benchmark without the motion score (referred to as Dynamic Degree in
VBench). All evaluation metrics are detailed in Appendix D. The empirical study shows MarDini’s strong
potential, performing on par with other existing methods across several metrics while exhibiting higher
efficiency and requiring no generative image pre-training. Interestingly, we observe that MarDini-S marginally
outperformsMarDini-L on some evaluationmetrics. We speculate that this is due toMarDini-L requiringmore
training time to accommodate higher-resolution data. Nonetheless, we observe clear advantages in scaling
the MAR model size, as MarDini-L outperforms in video interpolation and generates image-to-video results
that better align with physical principles. A list of generated video samples is provided in the supplementary
for further reference.
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Table 5 Image-to-Video Performance on VBench. The reported results of baseline methods are sourced from VBench
(Huang et al., 2024). For fair latency comparison, we standardize the input size to [512×512] for low and medium
resolutions, and [768×768] for high resolution cases across all methods. All other metrics were collected using the
original resolutions reported in the first column.

Method Frame
Resolution

Image-based
Pre-training

Latency
(s/frame)

I2V Sub.
Con

I2V Back
Con.

Video Quality
(w/ D.D.)

Video Quality
(w/o D.D.)

Vbench
Avg.

Low and Medium Resolution

ConsistI2V (Ren et al., 2024) [256×256] ! 7.63 95.82 95.95 78.87 85.74 88.27
DynamicCrafter (Xing et al., 2024) [256×256] ! - 97.05 97.56 80.18 85.00 88.07
DynamicCrafter (Xing et al., 2024) [512×320] ! 4.88 97.21 97.40 81.63 85.39 88.37
SEINE (Chen et al., 2023) [512×320] ! - 96.57 96.80 79.49 85.71 88.45
VideoCrafter (Chen et al., 2024a) [512×320] ! 9.43 91.17 91.31 81.34 87.55 88.47
SEINE (Chen et al., 2023) [512×512] ! 5.13 97.15 96.94 80.58 87.13 89.61
Animate-Anything (Dai et al., 2023b) [512×512] ! 1.58 98.76 98.58 81.21 88.84 91.30

MarDini-L/ST-9 [512×512] % 2.24 98.64 97.12 80.84 88.22 90.64
MarDini-S/ST-9 [512×512] % 2.24 99.04 97.23 81.00 88.59 90.98
MarDini-L/T-17 [512×512] % 0.48 98.23 97.01 80.25 87.68 90.16
MarDini-S/T-17 [512×512] % 0.46 98.76 97.18 80.56 88.17 90.62

High Resolution

SVD-XT-1.0 (Blattmann et al., 2023a) [1024×576] ! 2.19 97.52 97.63 82.79 86.54 89.30
SVD-XT-1.1 (Blattmann et al., 2023a) [1024×576] ! 2.19 97.51 97.62 82.23 86.66 89.38
I2VGen-XL (Zhang et al., 2023b) [1280×720] ! 6.01 96.48 96.83 81.17 87.02 89.43
DynamiCrafter (Xing et al., 2024) [1024×576] ! 7.13 98.17 98.60 82.52 87.31 90.08

MarDini-L/T-17 [768×768] % 1.01 98.34 96.63 80.88 88.22 90.54
MarDini-S/T-17 [768×768] % 0.98 98.77 96.78 81.29 88.68 90.95
MARDini-L/T-17 [1024×1024] % - 98.61 96.34 81.35 88.69 90.89
MARDini-S/T-17 [1024×1024] % - 98.78 96.46 81.74 88.97 91.13

3.4 Additional Applications

In this section, we explore some of MarDini’s additional intriguing capabilities and applications. While we
did not conduct rigorous ablation studies or quantitative comparisons, this serves as an initial exploration,
highlighting potential directions for future research.

Zero-Shot 3D Novel View Synthesis We demonstrate MarDini’s strong potential for 3D novel view synthe-
sis. Although trained solely on video data, MarDini exhibits a preliminary level of spatial understanding,
suggesting its potential for 3D applications. In Figure 7, two views of a fixed object serve as the first and
last reference frames, while intermediate frames are generated, as similar to our video interpolation task.
The model effectively generates convincing 3D-consistent views, highlighting its promising potential for 3D
generation. Notably, no camera control signals are used, and we will explore MarDini on 3D data with better
control in the future work.

Video Expansion MarDini integrates many of MAR’s advantages, including the support for video expansion,
where the conditional input is a set of frames rather than a single image. In this setup, motion information is
implicitly embedded in the input. As shown in Figure 8, MarDini can effectively predict video sequences
based on the provided motion cues (e.g., flower blooming, grass growing).

(Hierarchical) Auto-Regressive Generation By utilizing MAR for high-level planning, MarDini also supports
auto-regressive inference, generating more frames beyond the one defined in the training stage. We demon-
strate this through hierarchical auto-regressive generation: starting with a given video, we segment it into
multiple clips, expand each clip segment, and treat the expanded clip segment as the new video for recursive
video interpolation. In Figure 11 (in Appendix), we provide an example where, starting with 4 images,
MarDini with a 32-frame window size auto-regressively expands them into a 128-frame slow-motion video
(32× expansion). This illustrates that our model is not limited by the training window size, highlighting its
potential for long-range video generation.
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Reference Frames (First, Last) Generated Frames

Figure 7 Visualization of novel view synthesis conditioned on the two views. Starting with two views of an object,
MarDini generates the intermediate “frames”, effectively creating novel views. Notably, MarDini is trained without any
3D data but still manages to capture spatial information through video. The data used for this task is sourced from
publicly available research datasets (Downs et al., 2022).

Reference Frames Generated Frames

Figure 8 Visualization of Video Expansion. The model is conditioned on a sequence of 16 consecutive frames to predict
the subsequent 12 frames. The video data used for visualization is sourced from publicly available research dataset (Nan
et al., 2024).

4 RelatedWork

Auto-Regressive Model in Visual Generation. Auto-regressive (AR) models (Gers et al., 2000; Hochreiter and
Schmidhuber, 1997; Schmidhuber, 2015) have proven effective in natural language modeling (Brown, 2020;
Achiam et al., 2023; Dubey et al., 2024; Team et al., 2023). To adapt this scalable modeling strategy for image
and video generation, recent approaches (Yu et al., 2024; Chang et al., 2022; Li et al., 2023a; Yu et al., 2023a;
Chang et al., 2023; Yu et al., 2023a) replace causal attention in AR with bidirectional attention, allowing for
better capture of dense relationships in visual space.
Many studies (Yu et al., 2023b; Chang et al., 2023; Team, 2024; Xie et al., 2024) validate the scalability of this
approach. To align with the training recipes from LLMs, these studies adopt discrete visual representations,
using image tokenizers (Esser et al., 2021; Yu et al., 2021; Van Den Oord et al., 2017) to quantize continuous
pixel values into discrete representations. However, Li et al. (2024); Ramesh et al. (2021); Razavi et al. (2019)
argue that this strategy suffers from unstable training and may limit model capacity due to the inherently
continuous nature of visual data. This inspires recent works (Li et al., 2024; Zhou et al., 2024) to shift towards
continuous latent spaces for masked auto-regressive models to address these limitations.
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We follow this trajectory but diverges in two ways: i) We highlight the importance of mask ratios, which were
fixed in earlier works Li et al. (2024). By dynamically adjusting them with a progressive training strategy, we
improve both model scalability and stability. ii) We propose an asymmetric input resolution design, allowing
MAR to be effectively trained with full-resolution inputs.

Diffusion Model for Video Generation. In recent years, diffusion models (Ho et al., 2020; Neal, 2001; Jarzynski,
1997) have become a leading approach for both image and video generation (Rombach et al., 2022; Dhariwal
and Nichol, 2021; Ramesh et al., 2022; Chen et al., 2024c; Saharia et al., 2022a; Brooks et al., 2024; Dai et al.,
2023a; Girdhar et al., 2023; Menapace et al., 2024; Kondratyuk et al., 2023; Cong et al., 2024). These models
conceptualize the generation process as gradually refining a real sample from Gaussian noise, demonstrating
significant scalability and stable training.
In this paper, we offer two key insights into video generation: i) Previous methods (Wu et al., 2023; Ho et al.,
2022; Zhang et al., 2023a; Blattmann et al., 2023b; Wang et al., 2023; Girdhar et al., 2023; Gao et al., 2024; Cong
et al., 2024) often first pre-train an image generative model, and then fine-tune it for video generation, or they
require joint training for both tasks (Chen et al., 2024c; Esser et al., 2023). While multi-stage pre-training on
diverse inputs can be beneficial, video generation is often limited by the success of image-based pre-training,
which typically serves as a secondary task. This paper proposes an alternative: training video generation
models from scratch with progressively increasing task complexity. ii) Previous research (Girdhar et al.,
2023; Wang et al., 2023; Chen et al., 2024c; Blattmann et al., 2023b) has predominantly employed temporal
attention mechanisms to capture temporal dependencies, mainly due to the high computational and memory
costs associated with spatio-temporal attention. However, in alignment with previous work (Blattmann
et al., 2023b; Gao et al., 2024) suggesting that spatio-temporal attention enables superior video modelling, we
propose an amortized strategy that makes spatio-temporal attention computationally feasible, even at high
resolutions.

Asymmetric Neural Networks. This paper also relates to asymmetric neural architectures, widely used in
neural networks since the 1990s (Schmidhuber, 1992b,c). In computer vision, to achieve high-resolution
generation, many studies (Podell et al., 2023; Pernias et al., 2024; Saharia et al., 2022a; Li et al., 2024; Jain
et al., 2024; Kang et al., 2023) employ a common strategy: a model generates low-resolution/quality samples,
followed by another model that performs super-resolution (Kang et al., 2023), refinement (Podell et al., 2023),
or interpolation (Wang et al., 2024b) to enhance the generation quality. In discriminative video models,
asymmetric training strategies have been used for temporal segmentation models, where the full temporal
extension does not fit the available GPU memory Xu et al. (2021). Since computational costs are distributed
across stages, this approach is well-supported by existing computational platforms. Building on this trajectory
but extending beyond it, we propose a novel design that partitions the model into two distinct models:
a planning model and a generation model. The planning model, containing the majority of the model’s
parameters, is trained auto-regressively at a low resolution to generate conditional signals without producing
visual outputs. These signals are then processed by the lightweight generation model, which converts them
into high-resolution visual outputs using a diffusion process.
Unlike the traditional auto-regressive diffusion model (Li et al., 2024), which still faces high computational
costs as resolution increases, we use cross-attention as an information pathway to connect asymmetric
resolution input for more efficient training/inference.

5 Limitations and FutureWorks

Post Training. The primary goal of this paper is to demonstrate the feasibility and effectiveness of combining
masked auto-regressive (MAR) models with diffusion models (DM) for video generation. Consequently,
we allocated the majority of our computational resources to the pre-training stage, placing less emphasis on
post-training, despite its recognized importance in generative models (Dai et al., 2023a; Dubey et al., 2024;
Touvron et al., 2023). Post-training will be a top priority in our future work, focusing on enhancing long-term
planning, improving motion quality, and achieving higher resolutions.
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Improved Conditional Signals. A significant contribution of this work is the exploration of training a video
generation model without relying on generative image pre-training. However, this approach presents a
trade-off: MarDini is not inherently equipped with a text encoder for processing language-based instructions.
To conserve computational resources and quickly validate the feasibility of our method, we intentionally
excluded commonly used conditional signals, such as text embeddings and motion scores. Encouraged by
the initial success of our model, we plan to incorporate these conditional signals into MarDini in our future
updates to broaden its range of applications.

6 Conclusion

We have introduced a new family of generative models for video, i.e., MarDini, based on auto-regressive
diffusion, wherein a large planning model offers powerful conditioning to a much smaller diffusion model.
Our design philosophy considers efficiency from model conception, and so our heaviest model component
is only executed once at lower resolution inputs, whereas our generative module focuses on fine-grained
details at the frame level, reconciling high-level conditioning and image details. Our model is unique in
that it leverages a masked auto-regressive loss directly at the frame level. MarDini is afforded with multiple
generative capabilities from a single model, e.g., long-term video interpolation, video expansion, and image
animation. Our investigation shows that our modeling strategy is powerful enough to obtain competitive
results on various interpolation and animation benchmarks, while doing it at a lower computational needs
than counterparts with comparable parameter size.
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Appendix

A Reconstructionmetrics in Video Interpolation.

In Figure 9, it appears that blurrier images sometimes receive higher reconstruction error scores.

(a) Original Video

LPIPS: 0.1633
SSIM: 0.5262

(b) LDMVFI

LPIPS: 0.1865
SSIM: 0.4661

(c) Ours

Figure9 Failure case of reconstructionmetrics (SSIM, LPIPS) in video interpolation. We visualize two generated frames together with
their corresponding ground-truth frames. While the frames generated by MarDini are sharper than competitors, their corresponding
reconstruction scores are worse.

B MarDini Training Strategies

MarDini is trained on the Shutterstock video dataset with 34 million videos, using 256 H100 GPUs with a
distributed MAST scheduler (Choudhury et al., 2024). We use the AdamW optimizer for each stage with a
1.4 × 10−4 learning rate and cosine learning rate scheduler. We adapt our batch size based on the resolution
and the frame count to maximize GPU utility. For example, at [256 × 256] resolution with 9 frames, the batch
size is 1024, processing 9K frames per iteration; at [512 × 512] resolution with 9 frames, the batch size is 720,
processing 6480 frames per iteration. During inference, we set the classifier-free guidance (CFG)(Ho and
Salimans, 2022) scale as 2.5 for the image-to-video task with the noise solver DDIM (Song et al., 2021), and
we directly remove classifier-free guidance for video interpolation as it is redundant. FSDP (Zhao et al., 2023)
and activation checkpointing (Zhao et al., 2023) are enabled to further save GPU memory. We do not include
dynamic resolution training in our main training stages, as it slows down training. Instead, we find that after
convergence, fine-tuning the model for a few steps (10K-20K) with dynamic resolutions enables it to quickly
support this capabilities.

C Visualization of Video Interpolation

In Figure 10, we provide visualization results that demonstrate the superiority of MarDini in large motion
modelling, compared to FILM (Reda et al., 2022), LDMVFI (Danier et al., 2024), and VIDIM (Jain et al., 2024).

Generated Frames (Middle)
Reference Frames (First, Last) FILM LDMVFI VIDIM Ours Ground-Truth

Figure 10 Visualization of video interpolation methods conditioned on the first and last frames. We present the generated frames
from FILM (Reda et al., 2022), LDMVFI (Danier et al., 2024), VIDIM (Jain et al., 2024), and MarDini. The comparison results for these
methods are sourced from Jain et al. (2024). We have included additional samples in the supplementary materials.
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D Benchmarks

We evaluate the interpolation performance on VIDIM-Bench (Jain et al., 2024) and assess image animation
performance on VBench (Huang et al., 2024).
For VIDIM-Bench, the task involves generating seven intermediate frames, with the first and last frames
provided as conditions. The dataset includes approximately 400 videos from both DAVIS (Pont-Tuset et al.,
2017) and UCF-101 (Soomro et al., 2012). We use FVD (Unterthiner et al., 2018) and FID (Heusel et al.,
2017) as generation metrics, while adopting SSIM (Wang et al., 2004) and LPIPS (Zhang et al., 2018) as
reconstruction metrics. Notably, we evaluate the middle (5th) frame for reconstruction metrics, as it presents
the greatest challenge due to its distance from the reference frames.
For VBench, we utilize the official dataset to assess the model across several metrics: I2V-Subject Consistency,
I2V-Background Consistency, and video quality. The video quality evaluation considers dimensions such
as Subject Consistency, Background Consistency, Smoothness, Aesthetic Score, Imaging Quality, Temporal
Flickering, and Dynamic Degree. Given that our model lacks text supervision, we omit the evaluation for
video-text cameramotion. Furthermore, since ourmodel is pre-trainedwithout incorporating dynamic degree
guidance (known as motion score/strength), it is not directly comparable with other models in this respect.
Therefore, we additionally report video quality by averaging all the dimensions except for Dynamic Degree
and provide the VBench average score derived from I2V-Subject Consistency, I2V-Background Consistency,
and the video quality dimensions (excluding dynamic degree). For the latency analysis, we ensure fairness
by using the same computational platform: a single Nvidia A100 80G GPU. All implementations are based
on their official code without any engineering optimizations. For MarDini, we simply employ bf16 mixed
precision to enhance computational efficiency. To account for variations in frame number and resolution, all
results are normalized by frame count and evaluated at a consistent resolution of either [512 × 512] or [768
× 768].
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Figure 11 Visualization of MarDini using hierarchical auto-regressive generation. Starting with an initial 4 frames,
MarDini auto-regressively generates a complete 128-frame video, demonstrating its capability to extend beyond the
training window size (32 frames here).
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